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ABSTRACT

In many real-world scenarios where extrinsic rewards to the agent are extremely
sparse, curiosity has emerged as a useful concept providing intrinsic rewards that
enable the agent to explore its environment and acquire information to achieve
its goals. Despite their strong performance on many sparse-reward tasks, existing
curiosity approaches rely on an overly holistic view of state transitions, and do
not allow for a structured understanding of specific aspects of the environment.
In this paper, we formulate curiosity based on grounded question answering by
encouraging the agent to ask questions about the environment and be curious when
the answers to these questions change. We show that natural language questions
encourage the agent to uncover specific knowledge about their environment such
as the physical properties of objects as well as their spatial relationships with other
objects, which serve as valuable curiosity rewards to solve sparse-reward tasks
more efficiently.

1 INTRODUCTION

Efficient exploration in the absence of dense reward signals is a long-standing problem in reinforce-
ment learning (Vecerik et al., 2017). Without dense extrinsic signals, a promising alternative is to
define suitable auxiliary intrinsic signals that can help the agent in exploring its environment (Laud,
2004). Recently, curiosity has emerged as a promising computational framework for modeling in-
trinsic reward and has brought major advances in many sparse-reward domains (Pathak et al., 2017;
Burda et al., 2018a;b; Pathak et al., 2019; Dean et al., 2020). While the algorithmic details of different
methods vary, the core idea is to use changes in the observed state as the intrinsic reward to encourage
agents to explore their environment. Despite their strong performance on many sparse-reward tasks,
these existing approaches tend to rely on a holistic view of state transitions and do not allow for a
targeted understanding of specific aspects of the environment. However, not all states are equally
interesting but such information is not available to the agent a priori. On the contrary, humans rely on
extensive knowledge about the world when exploring the environment. Language serves as a powerful
medium for encoding this knowledge. A particular type of language that humans use is question –
in an unfamiliar environment, humans often start the exploration by asking what can be done in the
environment. Based on this observation, we hypothesize that language-based question answering
may provide a grounded and targeted medium to probe specific knowledge about the current state in
order to solve the task at hand.

As a step towards more structured and flexible curiosity-driven learning, we develop a novel form of
curiosity, ASK & EXPLORE (ANE), that leverages grounded question answering to encourage the
agent to ask questions about the environment and be curious when the answers to these questions
change. These questions can capture physical properties of the objects (e.g., Is the large sphere green
in color?) as well as their spatial relationships with other objects (e.g., Are there any blue spheres
behind the cyan ball?). By using language as a compositional medium to uncover specific knowledge
about the environment, we are able to train an agent that explores and solves challenging long-horizon
sparse-reward tasks. In addition to our qualitative results, we perform an in-depth study of what type
of questions are useful under what scenarios to provide empirical guidelines for applying our method.

2 BACKGROUND

Exploration bonuses and curiosity-driven exploration. Exploration bonuses motivate agents to
explore their environment even when extrinsic reward ret is sparse (or zero) by training the policy
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Figure 1: ASK & EXPLORE: Our approach proposes a curiosity formulation that leverages grounded question
answering to query specific knowledge about the environment. The agent is encouraged to ask questions and be
curious about transitions when the answer to a question changes (details in Section 3).

to maximize a new reward rt = ret + r
i
t, where rit is the exploration bonus or the intrinsic reward

at time t (Krebs et al., 2009; Dayan & Sejnowski, 1996; Sutton, 1990). The intrinsic reward rit is
designed to be higher in novel states in order to encourage the agents to explore less frequently
visited states. In recent years, several promising algorithms in this family include: 1) Curiosity-driven
exploration by self-supervised prediction (Pathak et al., 2017; Burda et al., 2018a; Pathak et al.,
2019), which formulates an intrinsic reward that encourages the agent to favor transitions with high
prediction error using dynamics-based learning, and 2) Random Network Distillation (RND) (Burda
et al., 2018b), which encourages novelty by training the policy to minimize the prediction error of a
predictor neural network as it tries to mimic a randomly initialized target neural network. Several
other approaches have used count-based exploration (Bellemare et al., 2016; Tang et al., 2017) and
multimodal signals (Dean et al., 2020) to encourage exploration.

CLEVR-Robot Environment: We perform experiments using the CLEVR-Robot Environ-
ment (Jiang et al., 2019), an open-source object interaction environment built using the MuJoCo
physics engine (Todorov et al., 2012) and CLEVR language engine (Johnson et al., 2017a). The
environment is designed to serve as a testbed for studying grounded language understanding and
object manipulation. To succeed in this environment, the agent must be able to handle a varying
number of objects with diverse visual and physical properties (see details in Appendix A).

3 ASK & EXPLORE

Our goal is to develop an intrinsic reward that leverages the knowledge about the physical properties
of objects and how objects in the environment relate to each other. Such intrinsic reward may bridge
the gap between passive pattern recognition and active decision making. To design the intrinsic reward,
we chose grounded language as a flexible medium for encoding this knowledge. The CLEVR-Robot
environment provides an ideal testbed for using grounded language as a source of intrinsic reward
as it provides functionalities to generate scenes and language (in the form of questions) that can be
evaluated as the agent interacts with the environment. Note that access to the true state and language
is not required. Indeed, for an agent in the real world, such assumptions do not hold. Nonetheless, just
like humans can describe a scene with language, the agent can also be equipped with a parameterized
visuolinguistic model such as a visual question answering model (VQA) or image captioning model.
We plan to explore these directions in future works.

We formulate an intrinsic reward that aims to generate the agent’s curiosity about transitions when
the answers to the agent’s questions grounded in the environment change. At every step, the agent has
access to n questions, q1, q2, ...qn. For question qk, the difference in the answer before the transition
A(st, qk), and after the transition A(st+1, qk) contributes to the curiosity signal corresponding to
that action (Figure 1). To evaluate A(st, qk), we experiment with two types of intrinsic rewards that
leverage language. One of them uses the labeling function of the CLEVR-Robot environment and the
other utilizes a parameterized VQA model (experiments with the latter can be found in Appendix
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(a) Goal is: “There is a green
sphere; are there any rubber cyan

balls in front of it?".

(b) Agent performs actions and
interacts with the environment

and tries to satisfy goal.

(c) Resulting state: Agent
receives +1 reward.

(d) Object ordering

Figure 2: We use the CLEVR-Robot environment and consider both dense (a-c) and sparse (d) reward settings.
The global location of the objects vary across episodes (images from Jiang et al. (2019)).

D.2). The intrinsic reward at time t, rit, expressed as

rit =
n

∑
k=1

1[A(st, qk) ≠ A(st+1, qk)] (1)

Further algorithmic details such as how the questions are selected can be found in Appendix B.

4 EXPERIMENTS

We design our experiments to understand the following overarching question: Does an agent with
grounded language understanding explore the environment in a more structured and efficient manner?
To answer different aspects of this question, we first evaluate our approach in tasks with different
reward sparsity (Section 4.1). Then, we evaluate the impact of different types of grounded language
understanding on the performance and how the impact differs in settings with varying reward sparsity
(Section 4.2). Finally, we study the effect of the linguistic feedback’s density on the efficacy of
exploration (due to space limit, we defer the details to Appendix D.1).

We compare our approach to three baselines:

1. Proximal Policy Optimization (PPO) (Schulman et al., 2017) (no exploration bonus)

2. Intrinsic Curiosity Module (ICM) (Pathak et al., 2017)

3. Random Network Distillation (RND) (Burda et al., 2018b).

We use the same optimized hyperparameters from the original papers (Pathak et al., 2017; Burda
et al., 2018b). The agent is trained using PPO in all experiments with the same hyperparameters1. We
perform three independent runs of each algorithm without any tuning of random seeds, and plot the
mean and standard deviation across the three runs (see details in Appendix C).

4.1 VARYING DEGREE OF REWARD SPARSITY

To study in what scenarios grounded language understanding can help exploration, we test our
approach in two tasks with drastically different reward sparsity.

Dense reward setting. In this setting, the agent needs to complete an object alignment goal where
the spatial relationship between two objects in the environment is specified, for example, "There is
a green sphere; are there any rubber cyan balls in front of it?" (Figure 2 (a-c)). Goal descriptions
take the form of questions which can be evaluated on the state to assess if the goal has been met
successfully. The agent receives a reward of +1 if it manipulates the objects to achieve the desired
spatial arrangement. When the environment is reset before every episode, it is ensured that the goal
state is not satisfied initially.

Sparse reward setting. In the object ordering task (Figure 2 (d)), the agent needs to order the
objects by color in a single line, for example, “arrange the objects so that their colors range from
blue to green in the horizontal direction, and keep the objects close vertically". The ordering of colors
we specify is: cyan, purple, green, blue, red from left to right. The agent is given a +10 reward if it
is able to successfully order the objects in this arrangement, and 0 otherwise. The rationale behind
opting for a +10 reward instead of +1 is to compensate for the extreme reward sparsity which led to
the agent not making any significant progress.

1The original ICM uses A3C but we used PPO similar to Burda et al. (2018a).
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(a) Dense reward setting (b) Sparse reward setting

Figure 3: ANE significantly outperforms the baselines (PPO, ICM and RND) in the sparse reward setting which
demonstrates the effectiveness of an intrinsic reward based on grounded question answering.

The results for the two settings are shown in Figure 3. We observe in the dense reward setting, PPO
with no exploration bonus outperforms all curiosity-driven methods, which highlights that curiosity
does not provide a significant advantage when the reward is dense. In the sparse reward task, we find
that while all existing baseline methods struggle to make meaningful progress, ANE significantly
outperforms the baselines in this setting using a single question (n = 1) at each step. This confirms
our hypothesis – an intrinsic reward that leverages grounded language understanding is better at
exploring the environment. The exploration results in a wider coverage of relevant states and helps
the agent learn to solve the task more efficiently compared to existing novelty-based exploration
methods. In addition, we study the impact of scaling to multiple questions in both dense and sparse
reward environments in Appendix D.1, and the performance of different approaches in the absence of
any extrinsic reward in Appendix D.3.

4.2 VARYING COMPLEXITY OF QUESTIONS

To better understand which questions are most useful for the task, we test the performance of ANE
using three types of questions querying varying complexity of spatial relationships between objects
in the environment - one, two and three “hop” questions:
One-hop: “There is a red metallic sphere; are there any green matte balls left of it?”
Two-hop: “Are there any purple rubber balls that are on the left side of the red sphere that is behind
the blue matte ball?”
Three-hop: “There is a green rubber ball behind the red metallic sphere; are there any blue balls in
front of the purple matte sphere?”

(a) Dense reward setting (b) Sparse reward setting

Figure 4: Comparing the performance of ANE for questions of varying complexity.

We observe in Figure 4 how the performance of the agent varies with increasing complexity of
questions (in terms of a greater number of pair-wise relationships between objects). It is interesting to
note that the relationship between language and agent performance is not the same across different
task settings. The extrinsic reward increases in the dense reward setting as we move from one-hop
to two-hop questions in the environment and then decreases as we progress to three-hop questions.
While in the sparse task, the success rate is highest using one-hop questions and decreases as we
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increase the number of object relationships, although all improve over the baselines. Therefore, even
simple probes of spatial relationships are sufficient as a curiosity signal.

5 CONCLUSION

In this paper, we proposed a novel form of curiosity by encouraging the agent to ask questions
about the environment and be curious when the answers to their questions change. We show that this
formulation of intrinsic reward probes targeted knowledge about the physical properties of the objects
as well as their spatial relationships with other objects, achieving significantly better performance
than existing curiosity methods on highly sparse reward tasks.
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APPENDIX

A CLEVR-ROBOT ENVIRONMENT

The CLEVR-Robot environment (Jiang et al., 2019) was designed in MuJoCo for object manipulation
tasks. In the environment, the agent can interact with objects with diverse visual and physical
properties. The environment supports CLEVR style (Johnson et al., 2017a) language so the agent
may receive linguistic feedback as it interacts with the environment.

We use the discrete action space which consists of a point mass agent pushing 1 of 5 objects in 1 of
the 8 cardinal directions for a fixed number of frames, so the discrete action space has size 40. Please
refer to (Jiang et al., 2019) for details of the action space. As a proof of concept for using grounded
language for exploration, we consider the standard 5 objects setting which contains a fixed set of 5
spheres of different colors- cyan, purple, green, blue, red. We plan to experiment with the diverse
objects setting where objects can take up different shapes such as cube, sphere and cylinder in future
work.

The environment supports all CLEVR style language. For the experiments, we consider 3 types of
language statement: one-hop, two-hop and three-hop. The number indicates the number of objects
involved in the spatial reasoning (for an h-hop question, h+1 objects are involved) and, indirectly, the
complexity of reasoning. The number of hops also affects the density of intrinsic reward and what
kind of states the agent is encouraged to visit.

B IMPLEMENTATION DETAILS

We begin with a fixed set of questions S from which a subset of n questions,Q1,Q2, ...Qn is sampled
at each step of the episode. A counter is maintained for a large reservoir of possible questions to record
the frequency of answer flips corresponding to each question. We use a hyperparameter 0.5 ≤ α ≤ 1
as a threshold to set an upper bound on the % of answer flips any question can encounter when it
is sampled, after which it is replaced by a new question sampled from the reservoir (e.g., If α = 0.6
and Q1 has witnessed 650 answer flips out of the 1000 times it was sampled, it is replaced by a new
question Qk which has not been seen by the agent yet). This is an attempt to ensure that if the agent
has learned transitions to exploit a particular language statement, it does not continue to exploit it.

Algorithm 1 provides a more complete picture of the approach.

C EXPERIMENTAL DETAILS

We use one copy of the environment since CLEVR-Robot Environment does not support multithread-
ing currently. We used rollouts of length 128 in all experiments. We use 3 optimization epochs per
rollout for our approach and ICM, whereas 4 epochs for RND. The episode terminates either if the
agent achieves the goal or exceeds maximum time steps. The agent is provided a sparse terminal
binary reward only if it arranges the objects according to the spatial relationship defined by the goal
(e.g., arrange the objects horizontally according to some color ordering), and 0 otherwise.

Table 1 contains details of how we preprocessed the environment for our experiments.

Hyperparameter Value
Grey-scaling False

Observation downsampling (64,64)
Extrinsic reward clipping False
Intrinsic reward clipping False

Table 1: Preprocessing details for the environments for all experiments.

We refer to the following open-source repositories for baselines:

ICM: https://github.com/pathak22/noreward-rl
RND: https://github.com/openai/random-network-distillation
ICM (Pytorch implementation): https://github.com/jcwleo/curiosity-driven-exploration-pytorch
RND (Pytorch implementation): https://github.com/jcwleo/random-network-distillation-pytorch
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Algorithm 1 ANE pseudo-code

N ← number of rollouts
Nopt ← number of optimization steps
K ← length of rollout
S ← set of questions initialized
M ← number of questions initialized in S
C ← counter for questions in S initialized to 0
n← number of questions queried at each step
D ← initialized with n ∗K questions from S
α ← threshold which determines maximum answer flipping frequency for a question
Sample state s0 ∼ p0(s0)
while size(S) <M do
d = environment description (describes the current scene using questions with T/F answers)
for q in d do

if q not in S then
add q to S
C[q] = 0

end if
end for
reset environment

end while
for i = 1 to K do

for j = 1 to n do
sample q ∼ S
add q to D[i]
remove q from S

end for
end for
t = 0
for β = 1 to N do

intrinsic reward rit = 0
shuffle entries in D
for j = 1 to K do
q1, q2, ...qn =D[j]
evaluate A(st, q1),A(st, q2), ...,A(st, qn)
sample at ∼ π(at ∣ st)
sample st+1, ret ∼ p(st+1, r

e
t ∣ st, at)

evaluate A(st+1, q1),A(st+1, q2), ...,A(st+1, qn)
for k = 1 to n do

if A(st, qk) ≠ A(st+1, qk) then
rit += 1
C[qk] += 1
if C[qk] / β ≥ α then

replace qk with new question q from S (question at index 0)
remove q from S

end if
end if

end for
add st, st+1, at, ret , r

i
t to optimization batch Bβ

t += 1
end for
Calculate target Tβ and advantage Advβ
for j = 1 to Nopt do

optimize θπ wrt PPO loss on batch Bβ , Tβ ,Advβ using Adam
end for

end for
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D ADDITIONAL RESULTS

We present additional analysis on several design decisions in our approach.

D.1 VARYING NUMBER OF QUESTIONS

We study the impact of number of questions used by the agent to query the environment on its
performance in both dense and sparse reward settings. The results are shown in Figure 5.

(a) Dense reward setting (b) Sparse reward setting

Figure 5: Comparing the performance of ANE for different values of n.

It is interesting to observe that effect of linguistic feedback’s density changes across different settings.
For object alignment tasks in the dense reward setting, the agent’s performance has an increasing
relationship with the number of questions (n) asked at each step. On the contrary, in the sparse
reward settings, we notice that increasing the number of questions does not help the agent explore
better, and the agent’s curiosity is declining with increasing n. We believe this difference can be
attributed to the highly different nature of the tasks in terms of both complexity and also the potential
inherent impossibility of simultaneously achieving high intrinsic reward and extrinsic reward – this
effect is magnified when the reward is extremely sparse (in the ordering task), so a trade-off is needed
to be made in terms of linguistic feedback density. It would be interesting to see if it is possible to
automatically find such balance.

D.2 VQA MODEL FOR CURIOSITY-DRIVEN EXPLORATION

Figure 6: Performance of ANE using a VQA model
for grounded question answering

We demonstrate that an agent equipped with a param-
eterized VQA model possesses grounded language
understanding and hence can leverage our approach
for curiosity-driven exploration (Figure 6). We train
a CNN-LSTM model used as a baseline in Johnson
et al. (2017b). We plan to work with more sophisti-
cated and interpretable approaches in future works
which represent human language as programs (John-
son et al., 2017b; Yi et al., 2018) to scale up to di-
verse object settings and eventually to settings where
ground truth language is not available such as navi-
gation.

D.3 PURE EXPLORATION

Figure 7: Comparing the performance of ANE
against baselines ICM and RND in the absence
of any extrinsic reward

We compare the performance of ANE against
curiosity-based baseline methods ICM and RND us-
ing pure exploration agents (agent does not have ac-
cess to extrinsic reward) (Figure 7). We observe that
even in the absence of extrinsic reward ANE per-
forms comparable to ICM and better than RND in the
dense reward setting. In the sparse reward settings, all
methods were unable to achieve success solely using
the intrinsic reward, which suggests that the effect of
ANE comes from more than having denser extrinsic
reward signal.
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