Modeling the Data-Generating Process is Necessary for **Out-of-Distribution Generalization**

Jivat Neet Kaur Amit Sharma Emre Kıcıman {t-kaurjivat, emrek, amshar} @ microsoft.com

State of SoTA Domain

Generalization Algorithms

Causally Adaptive Constraint Minimization (CACM)

Generalization under Independent, Causal, **Confounded and Selected shifts**

Selected

relationships

Theorem.

Ranking score

Causal DAG to specify

multi-attribute shifts

Empirical Evaluation

Correct constraint derived from causal graph matters

spurious correlation

b/w category and lighting

 (A_{cause})

Algorithm

https://arxiv.org/abs/2206.07837

Unseen data shift unseen azimuth values (A_{ind}) small NORB dataset

• Multi-class (5 classes) • Muti-valued attributes • Real objects

	[3]	vviles et al., ICLR 2022
ghting	azimuth	lighting+azimuth

No method can surpass ERM on all kinds of shifts!

Microsoft

[1] `	Ye	et	al.,	CVPR 2022	

Distribution Shifts: Causal Perspective

Algorithm

VREx [38]

ERM [69] MMD [42]

GroupDRO [63]

- Different distribution shifts arise due to differences in data-generating process (DGP)
 - Leading to different independence constraints

Any algorithm based on a single, fixed • independence constraint cannot work well across all shifts

Solution: Modeling the causal relationships in DGP

Multi-attribute Distribution Shifts

What if different distribution shifts co-exist?

- 1. Independent: $X_c \perp \perp A_{ind}$; $X_c \perp \perp E$; $X_c \perp$ $\perp A_{ind}|Y; X_c \perp \perp A_{ind}|E; X_c \perp \perp A_{ind}|Y, E$
- 2. Causal: $X_c \perp \perp A_{cause} | Y; X_c \perp \perp E; X_c \perp \perp$ $A_{cause}|Y, E$
- 3. Confounded: $X_c \perp \perp A_{conf}$; $X_c \perp \perp E$; $X_c \perp$ $\perp A_{conf}|E$
- 4. Selected: $X_c \perp \perp A_{sel} | Y; X_c \perp \perp A_{sel} | Y, E$

Observation: Note that no constraint is valid across all four settings

Theorem. For any predictor algorithm for Y that uses a single type of (conditional) independence constraint, there exists a realized graph \mathcal{G} and a corresponding training dataset such that the learned predictor cannot be risk-invariant predictor а across distributions in $\mathcal{P}_{\mathcal{G}}$.

Therefore, we propose an algorithm that adaptively applies the right constraint.

Algorithm for general graph

Phase I: Derive correct independence constraints

1. For every observed variable $A \in \mathcal{A}$ in the graph, check whether (X_c, A) are d-

	A _{cause}	A _{ind}	$A_{cause} \cup A_{ind}$
ERM	65.5 ± 0.7	78.6 ± 0.7	64.0 ± 1.2
IRM	66.7 ± 1.5	75.7 ± 0.4	61.7 ± 1.5
VREx	64.7 ± 1.0	77.6 ± 0.5	62.5 ± 1.6
MMD	66.6 ± 1.6	76.7 ± 1.1	62.5 ± 0.3
CORAL	64.7 ± 1.5	77.2 ± 0.7	62.9 ± 0.3
DANN	64.6 ± 1.4	78.6 ± 0.7	60.8 ± 0.7
C-MMD	65.8 ± 0.8	76.9 ± 1.0	61.0 ± 0.9
CDANN	64.9 ± 0.5	77.3 ± 0.3	60.8 ± 0.9
CACM	85.4 ± 0.5	80.5 ± 0.6	69.6 ± 1.6

No single algorithm performs well across all shifts CACM provides upto 20% improvement

Incorrect constraints hurt generalization!

separated.

- $\Rightarrow X_c \perp \perp A$ is a valid constraint
- 2. If not, check whether (X_c, A) are d-separated conditioned on any subset A_s of the remaining observed variables in $\mathcal{A} \setminus \{A\}$. $\Rightarrow X_c \perp \perp A \mid A_s$ is a valid constraint

Phase II: Apply regularization penalty using constraints derived

$$RegPenalty = \sum_{A \in A} Penalty_A$$

Algorithm	Color	Rotation	Col+Rot
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3
IRM	50.0 ± 0.1	61.2 ± 0.3	39.6 ± 6.7
MMD	29.7 ± 1.8	62.2 ± 0.5	24.1 ± 0.6
C-MMD	29.4 ± 0.2	62.3 ± 0.4	32.2 ± 7.0
CACM	70.4 ± 0.5	62.4 ± 0.4	54.1 ± 0.3

Constraint	Causal	Confounded
$X_c \perp \perp A \mid E$	29.7 ± 3.8	62.4 ± 1.9
$X_c \perp \perp A \mid Y, E$	94.1 ± 0.5	56.0 ± 1.0

Conclusion

- Important to study *multi*-attribute shifts
- Algorithms based on single, fixed constraint fail
- Necessary to model causal relationships in the data-generating process

Real-world data contains shifts on multiple attributes

Can we develop an algorithm that generalizes to not just individual shifts, but also multiattribute shifts?